医疗设备制造中的聚合物焊接与焊接物的材质、颜色以及焊接工艺控制、参数设置息息相关。与传统的超声波、加热式塑料连接法相比,激光塑料焊接具有特殊优势。
医疗设备制造中的聚合物焊接与焊接物的材质、颜色以及焊接工艺控制、参数设置息息相关。与传统的超声波、加热式塑料连接法相比,激光塑料焊接具有如下特殊优势:
采用640 nm至2m波长范围的高功率半导体激光系统,可同步实现在线闭环过程控制与参数文档记录。基于激光的塑料焊接工艺中,最佳波长是810 nm、940 nm、980 nm、1470 nm与1940 nm。基于半导体激光系统的性质,可通过调制驱动电流,从而直接调制光学输出功率,焊接流程简单快捷。
焊接物的颜色决定了焊接工艺的复杂程度。除了直接焊接两种透明材质之外,所有其它材料组合的连接都要使用“激光透明”夹层该夹层位于“激光吸收”区的顶部。激光将在接触面之间产生熔池。由于焊接物吸收激光以及熔池生成、透明塑料上的熔池需要进行湿处理等系列因素,焊接过程需一定时间(图1)。
顺序型周线焊接方式的速度极低,但可以控制到工件上的热量。同步焊接方式适用于快速和大批量生产,但存在灵活性差以及四周加热不均匀等缺点。掩模焊接方式灵活性不高,因为对于每一轮廓,都需要新的掩模,消耗掉的激光能量比所需要的更高,因此工艺效率比较低。准同步焊接方式结合了顺序型周线焊接和快速振镜扫描工序,配备了高温计。准同步方式能够快速、精确地进行焊接,控制热量,同时储存相关工艺数据用于质量控制和。
闭环过程控制是基于预设焊接温度、在线测量焊接温度,以及在线调节激光功率(如设置温度与测量温度之间出现偏差)。在开环过程与闭环过程的对比中可以看出,如果光学功率恒定,则焊点的温度会不断上升。如不停止加工,最终将导致焊接物。而对于闭环过程来说,可通过调节激光功率,使焊点温度接近闭环控制下的设置温度。如果使用这种工艺,激光功率可降到只需要维持熔池的程度,防止焊点温度过热。通过优化焊接温度,加工得以进一步进行。
上图的示例还可体现闭环焊接工艺的其它优点。如前所述,信号波纹是由使用的玻璃增强PCB材料所产生(图2)。在激光功率恒定时,靠近观察单个环的温度分布外形,可知:尽管焊缝呈对称方形的形状,但是在方形的不同侧面,其焊接温度各不相同。详细检查显示,这是由于聚合物基体内部的玻璃纤维取向不同所造成。根据这些不同取向,一部分的激光光线被玻璃纤维传递到基体的更深处。在此情况下,焊点温度将低于与光垂直方向的纤维的温度。
显然,此类材料只能在优化焊接温度下进行焊接,激光功率需要在线调节;因此,绝对需要半导体激光系统结合高温计与扫描振镜配合使用。对于表面吸收如此不均匀的材料,固定功率的激光光源很难实现优良的焊接效果。爆裂压力试验表明,使用优化焊接温度可以实现更多的工艺参数组合和更高的爆裂压力。